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Numerical solution of incompressible �ows by discrete
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SUMMARY

A discrete singular convolution (DSC) solver is developed for treating incompressible �ows. Three
di�erent two-dimensional benchmark problems, the Taylor problem, the driven cavity �ow, and a peri-
odic shear layer �ow, are utilized to test the accuracy, to explore the reliability and to demonstrate the
e�ciency of the present approach. Solution of extremely high accuracy is attained in the analytically
solvable Taylor problem. The results of treating the other problems are in excellent agreement with
those in the literature. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The prediction of complex unsteady �uid �ow requires numerical methods which provide
high accuracy at an a�ordable cost. Two major aspects are involved in the construction of
an accurate, e�cient and robust �ow solver. One of the aspects is iterative schemes or, more
precisely, algorithms for the time discretization and treatment of the pressure �eld in an in-
compressible �ow. In general, an iterative algorithm must be stable, convergent and consistent
with the boundary conditions and the spatial discretization. The other aspect concerns spatial
discretization, in which most e�ort has been focused on developing either global methods
[1–4] or local methods [5–8]. Global methods, such as Chebyshev spectral approximation,
pseudospectral methods and fast Fourier transform, are highly localized in their spectral rep-
resentations, but unlocalized in their coordinate space. By contrast, local methods, such as
�nite di�erence, �nite volume, �nite strip and �nite element methods, have high spatial lo-
calization, but are poorly localized in their spectral representations. As a consequence, global
methods are usually much more accurate than local methods, while the major advantage of
local methods is their �exibility in handling complex geometries and boundary conditions,
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which are crucial in many practical applications. Both global and local methods have achieved
great success in solving various �uid dynamical problems. However, for complex �ow phe-
nomena, both global and local methods encounter enormous di�culties in maintaining a high
numerical accuracy. Global methods become cumbersome to implement over complex geome-
tries. Spectral element methods can be used to overcome the geometric di�culty but they
lose accuracy at element boundaries. Standard local methods are known to converge very
slowly when the grid is re�ned. In many situations, local methods have di�culties to cap-
ture small-scale structures occurring in a complex �ow �eld, such as those in turbulence,
due to their limited numerical resolution. Although some special schemes, such as quadratic
upwind interpolation for convective kinematics (QUICK), and high-order-accurate compact
di�erence schemes, are very useful for treating complex �ows, they are often tedious to im-
plement. Moreover, their associated numerical dissipation and non-physical oscillations may
hinder their applications in dealing with mixed �uid �ow phenomena, such as turbulent �ow,
multiphase �ow and combustion in an irregular domain. Therefore, it is desirable to have
methods that combine global methods’ accuracy with local methods’ �exibility. Wavelets and
related multiresolution techniques are expected to �ll this gap. With features of time–frequency
(or position–momentum) localization and multiresolution analysis, wavelet theory and related
techniques have had great impact on signal processing, image compression and telecommuni-
cation. Thus, enormous e�ort has been made recently for developing wavelet methods to solve
ordinary di�erential equations (ODEs) and partial di�erential equations (PDEs) [9], including
the most recently reported adaptive wavelet algorithm [10]. However, this e�ort is hindered, to
a certain degree, by the di�culty of implementing boundary conditions in the multiresolution
analysis and by the lack of su�ciently accurate and e�cient wavelet algorithms.
In order to combine the merits of both global methods and local methods, a discrete singular

convolution (DSC) algorithm [11–13] was developed. The DSC algorithm provides a robust
and highly accurate approach for computer realization of singular convolutions, which involve
singular kernels of either delta type, Hilbert type, or Abel type. It has the wavelet feature
of time–frequency localization, but avoids the di�culty and redundancy of multiresolution
analysis. In the DSC algorithm, numerical approximations of a function and its derivatives
can be treated as convolutions with kernels. When the delta distribution is appropriately ap-
proximated by a sequence, it can be discretized on a grid for interpolation. Extremely high
computational accuracy can be achieved if the DSC is properly implemented in a numerical
algorithm. Historically, the delta distribution was informally used by physicists and engineers,
and was later formalized in rigorous mathematical framework by Schwarz [14] and others.
One of approximations to the delta distribution, which is often used in the DSC algorithm,
is Shannon’s delta kernel. The most important property of Shannon’s delta kernel is that, it
actually forms an orthogonal sampling basis for the Paley–Wiener reproducing kernel Hilbert
space. Therefore, a bandlimited L2 function on the real line can be exactly reconstructed from
a set of discrete function values. In order to improve the local and asymptotic behaviour
of Shannon’s delta kernel, a regularization procedure proposed in an earlier work [15] was
used to increase the regularity of the kernel [11]. As a result, discrete approximations of
tempered distributions can be constructed by using the regularized Shannon’s delta kernel in
the framework of the DSC algorithm [11]. It turns out that, while treating the delta distribu-
tion, the DSC approach provides a uni�ed description [12] to a number of commonly used
computational methods. The DSC algorithm has been successfully applied to the treatment
of the (non-linear) sine-Gordon homoclinic orbit singularity [16], eigenvalue problems of the
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Fokker–Planck equation [11] and the Schr�odinger equation [17], structural analysis [18; 19],
the formation of nanoscale morphological patterns [20] and the solution of the Navier–Stokes
equations with periodic boundary conditions [21; 22]. It was shown that the DSC algorithm
provides an excellent scheme for image edge detection [23].
The objective of the present work is to explore the utility of the DSC algorithm in the

framework of the successive over-relaxation (SOR) for the solution of the Navier–Stokes
equation and the Euler equation for incompressible �ows. A previous computation demon-
strated that the DSC approach is capable of providing extremely high accuracy for treating
the Taylor problem and the periodic shear layer �ow with relatively fewer grid points in
the computational domain [21]. However, the linear system of coupled algebraic equations
was solved by using the standard lower–upper (LU) triangular decomposition scheme. As
such, it requires large computer memory and is very di�cult to handle large-scale computa-
tions of practical origins. The present development makes it possible for the highly accurate
DSC algorithm to be used in �uid �ow simulations with less computer memory require-
ment. Moreover, it is relatively easy to adopt the present method for �ows involving complex
boundaries.
This paper is organized as follows. A brief review of the DSC algorithm is given in

Section 2 to improve readability of the present work. Section 3 is devoted to a detailed
description of spatial–temporal discretizations of the governing Navier–Stokes equations. A
fractional time step and potential function method is employed to overcome the di�culty
occurring in treating the pressure �eld in incompressible �ows. The standard SOR iteration
technique is utilized for solving the resulting Neumann–Poisson equation. In Section 4, three
numerical problems are chosen to test the present DSC–SOR approach. The numerical accu-
racy is con�rmed by using an analytically solvable Taylor problem—two-dimensional Navier–
Stokes equations with periodic boundary conditions. The utility of the present approach for
incompressible �ows is demonstrated further by solving the driven cavity problem and the
Euler equation for periodic shear layers. This paper ends with a conclusion.

2. DISCRETE SINGULAR CONVOLUTION

In this section, the discrete singular convolution (DSC) algorithm is brie�y reviewed both for
the integrity of the presentation and for the convenience of the reader. More details of the
algorithm can be found in Reference [11].
In the context of distribution theory, a singular convolution can be de�ned by

F(t)= (T ∗ �)(t)=
∫ ∞

−∞
T (t − x)�(x) dx (1)

where T is a singular kernel and �(t) is an element of the space of test functions. A singular
kernel can be regarded as an element of the dual space of test functions, and thus is a dis-
tribution. Interesting examples include singular kernels of Hilbert type and of delta type. The
former plays an important role in the theory of analytical functions, processing of analytical
signals, theory of linear responses and Radon transform, whereas the latter is a key element
in the theory of approximations and the numerical solution of di�erential equations. Since the
present work deals exclusively with the numerical solution of partial di�erential equations,
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our attention is focused on the singular kernels of delta type

T (x)= �(q)(x); (q=0; 1; 2; : : :) (2)

where superscript (q) denotes the qth-order ‘derivative’ of the delta distribution with respect
to x, which should be understood as generalized derivatives of distributions. When q=0;
the kernel, T (x)= �(x); is important for the interpolation of surfaces and curves, including
applications to the design of engineering structures. The kernels of other q values can be used
for solving di�erential equations. It is easy to see that the singular kernels of delta type are
singular—they cannot be directly digitized in a computer. Therefore, the singular convolution
of Equation (1) cannot be directly used for numerical computations. Moreover, the restriction
to the test function is too strict for most practical applications. To avoid the di�culty of using
singular expressions directly in a computer, one can construct a sequence of approximations,
��; to approximately represent the delta distribution, �(x).

lim
�→∞ ��(x)→ �(x) (3)

A simple example is Shannon’s delta sequence

��(x)=
sin(�x)
�x

(4)

By de�nition, it recovers the delta distribution at the limit,

lim
�→∞

∫
sin �(x − y)
�(x − y) �(y) dy= �(x) (5)

In fact, Equation (5) is valid in many other conditions where the function of interest is no
longer restricted to test functions. For example, for a given �¿0, Shannon’s delta kernel pro-
vides a basis for the Paley–Wiener reproducing kernel Hilbert space, B2� , which is a subspace
of the Hilbert space L2(R). As such, an L2 function bandlimited to � (i.e. those functions that
have compact support in the interval [−�; �] in their Fourier representation) can be exactly
reproduced by a convolution.
For numerical computations, what is important is discrete singular convolution which pro-

vides appropriate approximations to the original convolution of distributions

f(x)≈∑
x
��(x − xk)f(xk) (6)

where

��(x − xk)=���(x − xk) (7)

is designed for being used in discrete summations. Here {xk} is an appropriate set of discrete
points centred around the point x and � is the grid spacing. Depending on the mathematical
properties of the kernel, ��, the restriction on the f(xk) can be relaxed to include many
common-occurring functions. The discrete convolution can be realized by a sampling series.
In the case of Shannon’s delta kernel, it is most e�cient to sample at the Nyquist frequency
�=�=�. Because the Nyquist frequency provides highest computational e�ciency both on
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and o� a grid. In fact, it provides exact results when the sampling points are extended to an
in�nite series

f(x)=
∞∑

k=−∞
f(xk)

sin((�=�)(x − xk))
(�=�)(x − xk) ∀f∈B2�=� (8)

This is recognized as Shannon’s sampling theorem which reconstructs B2�=� function from a set
of discrete values. Shannon’s delta kernel forms a sampling basis for the Paley–Wiener repro-
ducing kernel Hilbert space. Obviously, the requirement of in�nitely many sampling points is
impractical for computer realization. In signal processing language, Shannon’s sampling kernel
is an ideal low-pass �lter which is necessarily an in�nite impulse response (IIR) function. A
truncated Shannon’s delta kernel is practical to be used but the truncation error is substantial.
In order to improve the localization and asymptotic behaviour of Shannon’s delta kernel, a
regularization procedure was employed to e�ciently reduce the truncation error [11]

��(x)→ ��;�(x)= ��(x)R�(x) (9)

where R� is a regularizer which satis�es

lim
�→∞ R�(x)=1 (10)

and ∫ ∞

−∞
lim
�→∞ ��(x)R�(x) dx=R�(0)=1 (11)

A commonly used regularizer is the Gaussian

R�(x)= exp
(
− x2

2�2

)
; �¿0 (12)

where � determines the width of the Gaussian window and is often varied in association with
the central frequency �=�=� (i.e. �= r�, here, r is a parameter chosen in computations).
It is easy to see that the Gaussian regularizer in Equation (12) satis�es the requirements of
Equations (10) and (11). By combining Equations (7), (9) and (12), the regularized Shannon’s
delta kernel in its discrete form can be given as

��; �(x − xk)= sin[(�=�)(x − xk)][(�=�)(x − xk)] exp
(
− (x − xk)

2

2�2

)
(13)

The di�erence between the present discrete form and the continuous form in Equation (4) is
to be noted. Expression (13) can be used to provide discrete approximations to the singular
convolution kernels of the delta type

f(q)(x) ≈
W∑

k=−W
�(q)�; �(x − xk)f(xk) (14)

where the superscript (q) denotes the qth-order derivative with respect to x, and 2W + 1 is
the computational bandwidth which is centred around x and is usually smaller than the whole
computational domain. Therefore, the resulting approximation matrix has a banded structure,
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which is particularly important to large-scale computations. The nature of approximation in
Equation (14) is due to the truncation and the regularization.
Recently, a mathematical estimation for the choice of W;�;� has been given [24]. For

example, if the L2 error for approximating an L2 function f is set to 10−�, the following
relations are to be satis�ed:

r(�− B�)¿
√
4:16� and

W
r
¿
√
4:61� (15)

where r=�=� and B is the frequency bounded for the function of interest, f. The �rst
inequality states that for a given grid size �, a large r is required for approximating high-
frequency component of an L2 function. The second inequality indicates that if one chooses
the ratio r=3, then the half bandwidth W ∼30 can be used to ensure the highest accuracy in
a double precision computation (�=15).
When the regularized Shannon’s delta kernel is used, the detailed expressions for ��; �(x),

�(1)�; �(x) and �
(2)
�; �(x) can be easily given as:

��; �(x) =



sin(�x=�)exp(−x2=2�2)

�x=�
(x �=0)

1 (x=0)
(16)

�(1)�; �(x) =




cos(�x=�)exp(−x2=2�2)
x

− sin(�x=�)exp(−x2=2�2)
�x2=�

−sin(�x=�)exp(−x
2=2�2)

��2=�
(x �=0)

0 (x=0)

(17)

and

�(2)�; �(x)=




−(�=�) sin(�x=�)exp(−x2=2�2)
x

− 2cos(�x=�)exp(−x
2=2�2)

x2

− 2cos(�x=�)exp(−x
2=2�2)

�2
+ 2

sin(�x=�)exp(−x2=2�2)
�x3=�

+
sin(�x=�)exp(−x2=2�2)

��2x=�
+
x sin(�x=�)exp(−x2=2�2)

��4=�
(x �=0)

−3 + �
2�2=�2

3�2
(x=0)

(18)

It should be pointed out that although only the regularized Shannon’s delta kernel and its
derivatives are used in this work, there are many other excellent discrete approximations
described elsewhere [11; 18].
It is noted that Equation (14) is very e�cient since just one kernel is required for the whole

computational domain [a; b] for given � and �. We refer this kernel as translationally invari-
ant. However, there is a technical aspect which concerns Equation (14) at a computational
boundary. It is obvious that functions, f(xk), need to be located outside the computational
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domain [a; b], where their values are usually unde�ned. Therefore, it is necessary to make
assumptions about those function values that are beyond the computational domain. In the
DSC algorithm, such functions of f(xk) are obtained according to their corresponding bound-
ary conditions. For example, in Dirichlet boundary conditions, such f(xk) can be taken to
be f(a) or f(b); in periodic boundary conditions, such f(xk) can be obtained by periodic
extensions from their corresponding values inside the computational domain [a; b]; in
Neumann boundary conditions, such f(xk) can be determined by f′(a) (or f′(b)):

3. METHOD OF SOLUTION

In this section, solution algorithm for incompressible �ows is described in detail. The govern-
ing equations for the problem are reviewed before an iterative scheme for treating the pressure
�eld is presented. Finally, the successive over-relaxation approach is adopted in association
with the DSC algorithm to elucidate a new DSC-SOR solver.

3.1. Governing equations and spatial discretization

The two-dimensional Navier–Stokes equations in the Cartesian coordinates for an incompress-
ible viscous �ows can be written in the dimensionless form as

@u
@t
=−@p

@x
+
1
Re

(
@2u
@x2

+
@2u
@y2

)
−
(
u
@u
@x
+ v

@u
@y

)
(19)

@v
@t
=−@p

@y
+
1
Re

(
@2v
@x2

+
@2v
@y2

)
−
(
u
@v
@x
+ v

@v
@y

)
(20)

@u
@x
+
@v
@y
= 0 (21)

where u and v are the velocity components in the x- and y-directions, respectively, p is the
pressure �eld, t is time and Re is the Reynolds number. For the convenience of discussion,
the Navier–Stokes equations are written in the form of

D(U ) = 0 (22)

@U
@t
= F(U )−∇p (23)

where U =(u; v)T, D denotes the divergence operator and F(U )= [G(U ); H (U )]T is the short-
hand notation for the combination of viscous term and the non-linear term

G(U )=
1
Re

(
@2u
@x2

+
@2u
@y2

)
−
(
u
@u
@x
+ v

@u
@y

)
(24)

H (U )=
1
Re

(
@2v
@x2

+
@2v
@y2

)
−
(
u
@v
@x
+ v

@v
@y

)
(25)

representing its components in x- and y-directions.
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In this work, a uniform grid in both the x- and y-directions is employed (i.e. �x=�y=�).
As such, the resulting DSC kernel is translationally invariant and only a single kernel is
required for all computations. We denote a grid point (xi; yj) by xi= i�x and yj= j�y and
the di�erences of two grid points by xi − xi+k =−k�x and yj − yj+k =−k�y. The values of
u; v and p at a grid point (xi; yj) are denoted by ui; j; vi; j and pi; j; respectively. Therefore,
the spatial discretizations of G(U ); H (U ); D(U ) and ∇p at point (i; j) are given by

Dh(U ) =
W∑

k=−W
�(1)�; �(k�x)ui+k; j +

W∑
k=−W

�(1)�; �(k�y)vi; j+k (26)

Gh(U ) =
1
Re

[
W∑

k=−W
�(2)�; �(k�x)ui+k; j +

W∑
k=−W

�(2)�; �(k�y)ui; j+k

]

−
[
ui; j

W∑
k=−W

�(1)�; �(k�x)ui+k; j + vi; j
W∑

k=−W
�(1)�; �(k�y)ui; j+k

]
(27)

Hh(U ) =
1
Re

[
W∑

k=−W
�(2)�; �(k�x)vi+k; j +

W∑
k=−W

�(2)�; �(k�y)vi; j+k

]

−
[
ui; j

W∑
k=−W

�(1)�; �(k�x)vi; j+k + vi; j
W∑

k=−W
�(1)�; �(k�y)vi+k; j

]
(28)

∇hp=
[

W∑
k=−W

�(1)�; �(k�x)pi+k; j;
W∑

k=−W
�(1)�; �(k�y)pi; j+k

]T
(29)

These expressions are used in the temporal discretization of the Navier–Stokes equations.

3.2. Temporal discretization and the treatment of pressure

A third-order Runge–Kutta (RK) scheme is used in the present study. In this scheme, Equa-
tion (23) can be solved by

U (1) = �1Un + �1[�t(Fh(Un)−∇hp(1))] (30)

U (2) = �2Un + �2[U (1) + �t(Fh(U (1))−∇hp(2))] (31)

U (n+1) = �3Un + �3[U (2) + �t(Fh(U (2))−∇hpn+1)] (32)

where (�1; �2; �3)= (1; 3=4; 1=3), (�1; �2; �3)= (1; 1=4; 2=3) and �t is the time increment. The
superscripts n; n+ 1 denote time tn and tn+1; and (1), (2) represent the �rst and second step
values, respectively.
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Considering the �rst step of the RK scheme, an intermediate velocity �eld U ∗(1) can be
obtained through

U ∗(1) = �1Un + �1[�t(Fh(Un)−∇hpn)] (33)

where U ∗(1) satis�es the same boundary conditions as those for the physical velocity �eld
Un+1 at time t n+1. The time increment of this equation is restricted by the CFL condition

max(�t)6min
(

4
Re(|u|+ |v|)2 ;

Re((�x)2 + (�y)2)
4

)
(34)

By subtracting Equation (30) from Equation (33), one has

U (1) −U ∗(1) =−�1�t∇h(p(1)−pn) (35)

Updating the pressure �eld at each step of the RK scheme requires special care, since
there is no obvious way to arrive at a governing equation for the pressure �eld. A common
approach is to ‘derive’ a pressure equation from the incompressible condition, Equation (21).
Many specially designed schemes have been developed for this derivation. For example, there
is a family of semi-implicit pressure-correction methods known as semi-implicit method for
pressure linked equation (SIMPLE), consistent SIMPLE algorithm (SIMPLEC) and SIMPLER
[25]. Arti�cial compressibility method [26], Marker and Cell (MAC) method [27], fractional-
step projection method [28] and its many variations are also commonly used in the �eld [29].
In this work, we adopt a fractional-time-step and potential-function method (FTSPFM), also
known as the pressure correction method [30; 31], which is a variant of the MAC method for
solving the governing Equations (19), (20) and (21). In the FTSPFM method, an intermediate
velocity �eld and a potential function are employed to correct the values of the velocity and
pressure �elds at a new time step.
Since pressure is a scalar quantity, one can de�ne a �rst-step potential function �(1)

�(1) =−�1�t(p(1)−pn) (36)

Hence, the pressure di�erence can be rewritten in terms of the �rst step potential function

U (1) −U ∗(1) =∇h�(1) (37)

By taking divergence over Equation (37), one attains the following Poisson equation for the
�rst-step potential function

∇2
h �

(1) =Dh(U (1))−Dh(U ∗(1)) (38)

Here, ∇2
h �

(1) is given by

∇2
h �

(1)
i; j =

W∑
k=−W

�(2)�; �(k�x)�
(1)
i+k; j +

W∑
k=−W

�(2)�; �(k�y)�
(1)
i; j+k (39)
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From Equation (22), the �rst-step velocity U (1) should satisfy the continuity equation, i.e.

Dh(U (1))=0 (40)

It follows that the Poisson equation for the �rst-step potential function can be simpli�ed

∇2
h �

(1) =−Dh(U ∗(1)) (41)

Since the �rst-step intermediate velocity �eld U ∗(1) and �rst-step velocity U (1) satisfy the
same boundary condition as that for the physical velocity Un+1 at time t n+1, it follows from
Equation (37) that, the �rst-step potential function �(1) satis�es the following Neumann bound-
ary condition

∇h�(1) = 0 (42)

at most computational boundary except for one point. Equation (41), together with
Equation (42), constitutes a Neumann–Poisson problem for the �rst order potential function
�(1). To attain a unique solution for pressure, the Neumann boundary condition is modi-
�ed by assigning a �xed constant value for the potential function � (or pressure) at one
grid point along the outer physical boundary. The right-hand side of Equation (41) involves
only quantities determined from the �rst-step intermediate velocity �eld U ∗(1), which in turn,
can be obtained by explicit expressions of Equation (33) from the known velocity Un and
pressure pn.
In the present DSC algorithm, the most time-consuming part of computations is the solution

of the Poisson equation (41). Any attempt to improve the computational e�ciency should
�rst focus on the Poisson solver. In an earlier work [22], both the Poisson equation for
pressure and the Helmholtz equation for the velocity �eld were solved by the direct LU
decomposition approach. As such, it was very di�cult to handle large-scale computations
required for complex �ow problems. To reduce the memory requirement, iterative approaches
are used. To this end, the successive over relaxation (SOR) method is utilized for solving the
Poisson equation (41). The SOR expression for Equation (41) is (here we have dropped the
superscript (1))

�l+1i; j =
!

2�(2)�; �(0)

(
−Dh(U ∗)−

−1∑
k=−W

�(2)�; �(k�x)�
l+1
i+k; j −

W∑
k=1
�(2)�; �(k�x)�

l
i+k; j

−
−1∑

k=−W
�(2)�; �(k�y)�

l+1
i; j+k−

W∑
k=1
�(2)�; �(k�y)�

l
i; j+k

)
+ (1−!)�li; j (43)

where the superscript l is the number of iterations, ! is the over relaxation factor, which
can be empirically chosen in the range from 1 to 2 in practical computations. By making
use of the boundary condition for � in Equation (42), the values of � located outside of
computational domain can be obtained by symmetric extensions of � inside computational
domain. Therefore, we solve the Poisson equation both at the interior and boundary points.
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The iterative convergence criterion for Equation (43) is set to

max |�l+1i; j − �li; j|6� (44)

where �¿0 is a given small parameter.
After obtaining the �(1), the updated velocity and the pressure at the �rst step can be

evaluated from the following correction equations

u(1)i; j = u
∗(1)
i; j +

W∑
k=−W

�(1)�; �(k�x)�
(1)
i+k; j (45)

v(1)i; j = v
∗(1)
i; j +

W∑
k=−W

�(1)�; �(k�y)�
(1)
i; j+k (46)

and

p(1)i; j =p
n
i; j −

�(1)i; j
�1�t

(47)

Similarly, the velocity and the pressure at the second step and at the next time step tn+1
are computed. The overall numerical procedure is summarized as follows:

1. From the known velocity and pressure �elds at time tn or from the initial guessed
values for the �elds, the intermediate velocity �elds (u∗; v∗) are computed according to
Equation (33).

2. By making use of u∗ and v∗, the potential function � is evaluated by using the SOR
method according to Equation (43). The convergence of this inner iteration is controlled
by the tolerance �.

3. By using u∗; v∗ and �, the new velocity is evaluated from Equations (45) and (46).
4. By using �, the new pressure is updated from Equation (47).
5. Note that there are three such steps within one time-step because of the adoption of the
third-order RK scheme. The third step produces the velocity and pressure �elds at the
time step tn+1.

6. The whole procedure is repeated (outer iterations) and the solution is updated until an
overall convergence is achieved or an initially designed stop-time is reached.

4. RESULTS AND DISCUSSION

In this section, three benchmark numerical examples are chosen to demonstrate the perfor-
mance of the present DSC–SOR approach for the solution of incompressible �ows. The �rst
test example is the Taylor problem, a two-dimensional Navier–Stokes equation with periodic
boundary conditions for incompressible �ows. This problem has an exact solution which en-
ables us to validate the computational accuracy and e�ciency of the present approach. The
second example is a driven cavity �ow, a standard problem for validating new numerical
algorithms. The third test example is a double periodic shear layer �ow in a square box. The
latter two examples demonstrate the stability, reliability and robustness of the present method
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for solving incompressible �ow problems. All computations were carried out on DEC=Compaq
workstations.

4.1. The Taylor problem

This example is used to check the accuracy and e�ciency of the present DSC–SOR method for
the Navier–Stokes equations. Here we consider the two-dimensional Navier–Stokes equations
presented in Equations (19), (20) and (21) in a unit square [0; 2�]× [0; 2�] and the periodic
boundary conditions. The initial velocity �elds are given by

u(x; y; 0) =− cos(x) sin(y) (48)
v(x; y; 0) = sin(x) cos(y) (49)

The exact solution for this problem is known as

u(x; y; t) =− cos(x) sin(y) exp
(
− 2t
Re

)
(50)

v(x; y; t) = sin(x) cos(y) exp
(
− 2t
Re

)
(51)

p(x; y; t) =−1
4
[cos(2x) + cos(2y)] exp

(
− 4t
Re

)
(52)

In the present computation, we set �x=�y=�=1=(N − 1) with N =33 and 65. The
Reynolds numbers ranging from Re=20 to ∞ are calculated. A �xed time increment
�t=0:001 is used. In order to examine the in�uence of bandwidth W on the accuracy, three
values of W =8; 16 and 32, with corresponding regularization parameters being �=�=1:73,
2.46 and 3.2, respectively, are considered. It is quite e�cient to set the convergence constant
as �=10−12 with the over relaxation factor ranging between 1.2 and 1.8. To implement a
single convolution kernel, the values of u, v, u∗, v∗ and p outside the computational domain
are obtained from those inside the computational domain by using the periodic condition.
Table I shows the L2 errors between present computed velocity �eld and the exact velocity

�eld of Equations (50) and (51) at two Reynolds numbers corresponding to four di�erent grid
spacings. The solution is computed up to t=2. The results of E and Shu [32] are also listed
in Table I for a comparison. Their results are obtained by using a high-order essentially non-
oscillatory (ENO) scheme. It is evident that the accuracy of present results is much higher than
that of E and Shu. Both results improve as the mesh is re�ned. The accuracy of present results
is getting better as the Reynolds number increases, because the velocity and pressure �elds
vary slowly at high Reynolds numbers. In contrast, the accuracy of E and Shu deteriorates at
high Reynolds numbers. It is also obvious that, the accuracy of the DSC algorithm increases
with the bandwidth. This property has important implication in practical computations: one
could select an appropriate bandwidth to achieve a desired level of accuracy in a numerical
computation without changing one’s computer code. Even with a small bandwidth and a
relatively coarse mesh (8 and 33× 33), the DSC has already given a result compatible with
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Table I. L2 errors for the Taylor problem (t=2).

DSC ENO

N W =8 W =16 W =32

Re=20
33 2:23(−4) 1:12(−9) 8:36(−10)
65 8:19(−5) 6:49(−10) 9:37(−11) 2:93(−3)
129 1:80(−4)
257 1:10(−5)

Re=∞
33 7:68(−13) 4:68(−13) 4:47(−13)
65 2:34(−13) 2:22(−13) 2:10(−13)
129 1:46(−3)
257 1:11(−4)

that of the ENO at a much �ner grid. All these results indicate that the present DSC–SOR
method is extremely accurate and reliable for solving the Navier–Stokes equation with periodic
boundary conditions. In fact, in an earlier direct approach [21], the DSC algorithm attained
an even smaller error (∼ 10−15) for the case of Re=∞ by using 33 grid points in each
dimension. However, the present iterative algorithm requires much smaller computer memory
for similar calculations and thus has the potential for being used in large-scale computations.

4.2. Driven cavity �ow

The driven cavity �ow is another standard test problem for evaluating the reliability and
e�ciency of potential Navier–Stokes equation solvers [33–38]. The computational domain is
a unit box [0; 1]× [0; 1]. This simple geometry makes it possible to compare di�erent numerical
methods in details. The incompressible condition is adopted in the computational domain and
the no-slip velocity boundary condition is applied to all boundaries with the tangential velocity
value at the top boundary (the velocity of the moving lid) being set to 1.
In fact, the problem is non-trivial, particularly at high Reynolds numbers, due to the occur-

rence of complex �ow structure and small-scale vortices. A large primary eddy is formed in
the cavity and it gradually moves towards the centre, as the Reynolds number increases. Two
secondary eddies are lodged in the bottom dowstream and upstream corners of the cavity. At
su�ciently high Reynolds numbers, a third secondary eddy occurs close to top upstream cor-
ner. Various tertiary vortices in both bottom left and right corners appear when the Reynolds
number is close to 10 000.
In the present DSC–SOR approach, the velocity at the corner nodes on the top boundary

is �xed to zero to avoid in�ow and out�ow through the corners. In order to have a unique
solution, the potential function � value at the midpoint of the bottom side is �xed to zero.
The velocity and pressure initial conditions are set to zero inside the domain. The compu-
tational bandwidth is chosen as W =32. The regularization parameter is set to �=3:2�.
The over relaxation factor is taken as !=1:8, and the convergent parameter of �=10−6 is
used. The values of u; v; u∗; v∗ outside the computational domain are set to their corresponding
values on the box boundary, while p values outside the computational domain are obtained
by symmetric extensions from their values inside the computational domain. In the present
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Table II. Results for u-velocity along the vertical centerline at Re=1000 with
di�erent meshes.

DSC Ghia et al.

y 33× 33 65× 65 129× 129 201× 201 129× 129
1.0000 1.00000 1.00000 1.00000 1.00000 1.00000
0.9766 0.63025 0.67498 0.66990 0.66706 0.65928
0.9688 0.55464 0.58358 0.58151 0.58065 0.57492
0.9609 0.49769 0.51348 0.51365 0.51401 0.51117
0.9531 0.45744 0.46305 0.46534 0.46705 0.46604
0.8516 0.34253 0.32052 0.32743 0.33010 0.33304
0.7344 0.19718 0.18255 0.18467 0.18542 0.18719
0.6172 0.06368 0.05686 0.05635 0.05630 0.05702
0.5000 −0:05594 −0:05646 −0:05953 −0:06023 −0:06080
0.4531 −0:10207 −0:10031 −0:10440 −0:10538 −0:10648
0.2813 −0:27793 −0:26568 −0:27281 −0:27495 −0:27805
0.1719 −0:37878 −0:36364 −0:37407 −0:37863 −0:38289
0.1016 −0:28356 −0:27728 −0:28531 −0:28996 −0:29730
0.0703 −0:20935 −0:20577 −0:21110 −0:21468 −0:22220
0.0625 −0:18884 −0:18665 −0:19143 −0:19474 −0:20196
0.0547 −0:16653 −0:16663 −0:17125 −0:17430 −0:18109
0.0000 0.00000 0.00000 0.00000 0.00000 0.00000

work, simulations are performed over a range of Reynolds numbers (Re=100, 400, 1000,
3200, 5000, 7500 and 10 000). In all calculations, a small time increment (�t=0:0001) is
initially given, then the time increment is automatically optimized by using the CFL stability
condition of Equation (34) for the rest of the computations. Solutions for small Reynolds
numbers (Re=100, 400) are obtained by using N =65 in each dimension, while N =129 in
each dimension is utilized for higher Reynolds numbers (Re=1000, 3200). A �ne mesh of
201× 201 was used to simulate �ows at Reynolds numbers of Re=5000; 7500 and 10 000.
In order to investigate the reliability and the grid-independence nature of the DSC sim-

ulations, three di�erent meshes are employed for the case of Re=1000 to show that the
present solution is indeed grid independent. Tables II and III list the velocity values along the
geometrical centre for the case of Re=1000 at di�erent meshes together with the solution of
Ghia et al. [34] for a comparison. Even at a mesh of 33× 33, the agreement is very good
and the numerical solution is essentially grid independent as the mesh reaches 129× 129. The
streamline contour of this case is plotted in Figure 1, which shows the same characteristic as
that of Ghia et al. [34]. The convergence history of the case Re=1000 is given in Figure 2
for a mesh of 129× 129. The residual of velocity is de�ned as max(|un+1i; j − uni; j|; |vn+1i; j − vni; j|).
We assume that a converged state is reached if the residual is smaller than a given positive
constant. It is seen from Figure 2 that the present simulation converges well with respect to
time integration.
To further validate the present algorithm, velocity pro�les at Reynolds numbers of 100,

400 and 3200 are depicted in Figure 3. It is found that for low Reynolds numbers of 100
and 400, a mesh of 65× 65 gives results which compare well with those of Ghia et al. [34]
obtained by using a larger mesh (129× 129). The present simulation provides an excellent
comparison with that of Ghia et al. [34] at Re=3200; see Figures 3(c) and 3(d).
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Table III. Results for v-velocity along the horizontal centerline at Re = 1000 with
di�erent meshes.

DSC Ghia et al.

x 33× 33 65× 65 129× 129 201× 201 129× 129
1.0000 0.00000 0.00000 0.00000 0.00000 0.00000
0.9688 −0:19627 −0:20509 −0:21209 −0:21680 −0:21388
0.9609 −0:26065 −0:26615 −0:27516 −0:28072 −0:27669
0.9531 −0:32182 −0:32408 −0:33486 −0:34100 −0:33714
0.9453 −0:37737 −0:37714 −0:38871 −0:39524 −0:39188
0.9063 −0:51362 −0:49748 −0:50918 −0:51464 −0:51550
0.8594 −0:43031 −0:40692 −0:41615 −0:41943 −0:42665
0.8047 −0:31860 −0:30178 −0:31024 −0:31313 −0:31966
0.5000 0.02962 0.02719 0.02626 0.02599 0.02526
0.2344 0.32570 0.30996 0.31648 0.31904 0.32235
0.2266 0.33347 0.31756 0.32454 0.32730 0.33075
0.1563 0.36281 0.34975 0.36143 0.36628 0.37095
0.0938 0.30735 0.30284 0.31593 0.32139 0.32627
0.0781 0.28505 0.28009 0.29315 0.29854 0.30353
0.0703 0.27096 0.26688 0.27972 0.28505 0.29012
0.0625 0.25387 0.25159 0.26436 0.26965 0.27485
0.0000 0.00000 0.00000 0.00000 0.00000 0.00000

Figure 1. Streamline contours at Re=1000, with a uniform mesh of 129× 129.

Figure 4 presents converged streamline contour plots at four di�erent Reynolds numbers.
In general, the centre of the primary eddy is initially located at the top right corner and
soon moves towards the geometric centre of the cavity as the time increases at low Reynolds
numbers. As the Reynolds number increases, the primary eddy becomes relatively smaller
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Figure 2. Convergence history of the residual of velocity at Re=1000 with a uniform mesh of 129× 129.

and moves towards the steady-state position slowly, whereas the relative size of secondary
eddies increases. For the cases of Re=3200, 5000 and 7500, the third secondary eddy appears
near the upstream top corner. Initially, all secondary eddies appear very small at corners (or
near the wall for the case of the third secondary eddy), and they grow up to steady-state
sizes as time increases. These results are in excellent agreement with those in the literature
[34].
Although Ghia et al. [34] presented steady-state solution for driven cavity �ow up to

Re=10000; it is well-known that the system becomes unstable around Re=7763 [39]. Re-
cently, Li�man [40] con�rmed this unsteady character at Re=10000 by using a highly
accurate collocation spectral solver. Here we test our approach by considering the case of
Re=10000. To remove the corner singularities, we adopt a new initial velocity for the upper
lid of the cavity

u(xi; 1:0; 0) = 1:0− exp[−20:0(1:0− x2i )] (53)
v(xi; 1:0; 0) = 0 (54)

The mesh size adopted in this case is still 201× 201, and other parameters used are the same
as those stated earlier. Apart from the usual central primary vortex, the secondary vortices
at the two bottom corners and the right top corner, there are tertiary vortices in left and
right corners. The �ow is also found to be unsteady and gives a quasi-periodic pattern. These
results are in excellent agreement with those of Li�man [40].

4.3. Periodic shear layer �ow

The last problem is a double shear layer �ow [41], which is also a benchmark model for testing
the reliability and numerical resolution of potential numerical algorithms for incompressible
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Figure 3. Comparison of velocity pro�les, (a) Re=100, horizontal velocity along the vertical centreline;
(b) Re=400, horizontal velocity along the vertical centreline; (c) Re=3200, horizontal velocity along

the vertical centreline; (d) Re;=3200, vertical velocity along the horizontal centreline.

�ows [22; 32; 38; 41]. In particular, an earlier direct DSC algorithm [22] was found to provide
excellent results for this problem with a very small mesh size. Furthermore, this is an inviscid
�ow problem, governed by the Euler equation (i.e., the case of Re=∞ for the Navier–
Stokes equation). The computational domain is de�ned on the square box [0; 2�]× [0; 2�]
with periodic boundary conditions in both horizontal and vertical directions. From the Taylor
problem, we know that the present algorithm is extremely accurate for the Euler equation.
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Figure 4. Contours of streamlines at di�erent Reynolds numbers: (a) Re=3200, 129 × 129; (b) Re=
5000; 201× 201; (c) Re=7500; 201× 201; (d) Re=10 000; 201× 201.

However, the initial velocity �eld is di�erent in the present case

u(x; y; 0)=



tanh

(
y − �=2
	

)
y6�

tanh
(
3�=2− y

	

)
y¿�

(55)

v(x; y; 0)= � sin(x) (56)
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Figure 5. Select streamline contours for the periodic shear layer �ow with
A=15 and a mesh of 129× 129.

where 	=�=A (A is a positive constant) and � = 0:05. It is well known that this initial
�ow �eld describes horizontal shear layers of �nite thickness that are perturbed by a small
amplitude vertical velocity. The evolution under the Euler equation leads to a periodic array
of large vortices, with the shear layer between the rolls being thinned by the large straining
�eld. This problem becomes very challenging as the parameter A increases. Because the initial
�ow �eld becomes discontinuous at the limit of A→∞. The solution quickly develops into
multiple roll-ups with smaller and smaller scales. The resolution is lost eventually with a �xed
grid size.
In the present computation, we choose W =32, �=3:2�, !=1:8 and �=10−8. Periodic

boundary extensions are used to treat the values of u; v; u∗; v∗ and p outside the computa-
tional domain. We consider A=15 in this work which was calculated on a uniform mesh of
�x=�y=� = 2�=(N − 1) with N =129. Time increment is set to �t=0:001 initially and
later it is automatically optimized according to the CFL stability condition for the rest of the
computation.
Streamline plots in Figure 5 illustrate vividly how double shear layers evolve into a periodic

array of vortices. Figure 6 depicts the vorticity contours. The shear layers quickly develop

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:789–810



808 D. C. WAN, Y. C. ZHOU AND G. W. WEI

Figure 6. Select vorticity contours for the periodic shear layer �ow with A=15 and a mesh of 129× 129.

into roll-ups that are stretched and thinned by the large straining �eld. Similar behaviour
was observed by previous researchers [32; 38]. These results are in excellent agreement with
those in earlier references [32; 38; 41]. It should be pointed out that our calculation starts
to lose resolution at t=10, which is indicated by the occurrence of wiggles in the vorticity
contour plots. Similar phenomenon can be noted in previous results [41], which was computed
by using a spectral collocation method with a much larger (512× 512) mesh size. We have
checked that the kinetic energy is well-preserved in our computations. With the increase in
the value of A, the problem becomes more and more challenging. Although we could re�ne
the mesh to achieve results with a satisfactory resolution, the solution of this problem may
have to follow the trail of a recently proposed algorithm with the capability of shock capture
[42], so that vortex structures with high resolution can be attained.

5. CONCLUSION

In this work, a discrete singular convolution (DSC) algorithm is developed for simulating
incompressible �ows. The method of fractional time steps in association with a potential
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function is employed for the time stepping and for the treatment of the pressure �eld. The
resulting Neumann–Poisson equation for the potential function is solved by the successive
over-relaxation (SOR) algorithm. Three benchmark incompressible �ow problems are em-
ployed to explore the reliability, to test the accuracy and to demonstrate the e�ciency of the
present DSC–SOR method. The accuracy obtained in our calculation of the analytically solv-
able Taylor problem is extremely high. The driven cavity �ow problem is utilized to test the
reliability of the present method for handling no-slip boundary conditions. The validity of the
present method is checked by a comparison of velocity data at Re=1000 with benchmark
ones in the literature [34]. The convergence history is examined and velocity pro�les are
compared with those of Ghia et al. [34] at a few di�erent Reynolds numbers. Both primary
and secondary eddies attained in the present computations are in excellent agreement with
those of other established methods [34–36] in the �eld. Our results of Re=10000 are in ex-
cellent agreement with those of Li�man [40] obtained by using a spectral collocation solver.
A periodic shear layer �ow describing the vortices formation of jet motion is employed to
test present algorithm for resolving small-scale singularities. This is a very challenging prob-
lem, although its geometry and boundary conditions are very simple. Both spectral methods
and local methods encounter di�culties in handling this problem. It is found that the present
approach provides competitive results for this example. Our results indicate that the present
DSC based algorithm provides an alternative approach for solving incompressible �ow
problems.
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